

	Form Number	EXC-01-02-02A
	Issue Number and Date	2/3/24/2022/2963 05/12/2022
Form:	Number and Date of Revision or Modification	
Course Syllabus	Deans Council Approval Decision Number	2/3/24/2023
	The Date of the Deans Council Approval Decision	23/01/2023
	Number of Pages	08

1.	Course Title	Applied Probability				
2.	Course Number	0301338				
3.	Credit Hours (Theory, Practical)	3				
5.	Contact Hours (Theory, Practical)	3				
4.	Prerequisites/ Corequisites	0301333				
5.	Program Title	B.Sc.				
6.	Program Code					
7.	School/ Center	Science				
8.	Department	Mathematics				
9.	Course Level	College requirement				
10.	Year of Study and Semester (s)	3 rd year, all Semesters				
11.	Other Department(s) Involved in	None				
11.	Teaching the Course					
12.	Main Learning Language	English				
13.	Learning Types	■Face to face learning □Blended □Fully online				
14.	Online Platforms(s)	■Moodle ■Microsoft Teams				
15.	Issuing Date	November,9,2017				
16.	Revision Date	28/11/2024				

17. Course Coordinator:

Name: Ahmad Zghoul	Contact hours: 11:30-12:30 Su, Tue
Office number:	Phone number:
Email: a.zghoul@ju.edu.jo	

18. Other Instructors:

Name:
Office number:
Phone number:
Email:
Contact hours:
Name:
Office number:
Phone number:
Email:
Contact hours:

19. Course Description:

- Revision of some probability distributions
- Queuing Theory (Description of queuing models, the Poisson process, Birth-Death processes, single Server queue and some modifications)
- Reliability Theory (Failure laws and failure rate, reliability of series and parallel systems)
- Quality control (control charts, acceptance sampling, single sampling plan, other sampling plans)
- Information theory and coding (Uncertainty, information measures and entropies, the first coding

theorem discrete channels and the second coding theorem)

20. Program Student Outcomes (SO's):

(To be used in designing the matrix linking the intended learning outcomes of the course with the intended

learning outcomes of the program)

- **SO1.** Identify, formulate, and solve broadly-defined technical or scientific problems by applying knowledge of Mathematics and Science and/or technical topics to areas relevant to the discipline.
- **SO2.** Formulate or design a system, process, procedure or program to meet desired needs.
- **SO3.** Develop and conduct experiments or test hypotheses, analyze and interpret data and use scientific

judgment to draw conclusions.

الجامعة الاردنية

SO5. Reflect the impact of technical and/or scientific solutions in economic, environmental, and societal

contexts.

SO8. Utilize techniques, skills, and modern scientific tools such as mathematical packages, statistical software,

graphing calculators, and online resources necessary for professional practice.

21. Course Intended Learning Outcomes (CLO's):

(Upon completion of the course, the student will be able to achieve the following intended learning outcomes)

- 1. Understand and Utilize random variables, distributions, and Stochastic Processes: Students will review basic distribution theory, then develop the ability to analyze and work with key stochastic processes, such as the Poisson process and Birth-Death processes, to model and predict probabilistic behavior in various applied contexts.
- 2. **Model and Solve Queuing Systems**: Students will gain the ability to describe, model, and solve problems involving queuing systems using concepts such as the Poisson process, Birth-Death processes, and single-server queues.
- 3. Assess System Reliability: Students will learn to evaluate the reliability of systems, including calculating failure rates and determining the reliability of series and parallel configurations using appropriate probabilistic methods.
- 4. **Implement Quality Control Techniques**: Students will acquire the skills to design and interpret control charts, implement various acceptance sampling plans (including single and other sampling strategies), and assess the quality of manufacturing or service processes using probabilistic methods.
- 5. **Apply Information Theory to Communication**: Students will understand and apply fundamental concepts of information theory, such as entropy and uncertainty, to evaluate communication systems, and learn to use coding theorems to optimize discrete channels.

	The learning levels to be achieved							
Course CLOs	Remembering	Understanding	Applying	Analysing	evaluating	Creating		
Understand and Utilize Stochastic Processes	√	\checkmark	\checkmark	~	\checkmark			
Model and Solve Queuing Systems	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
Assess System Reliability	\checkmark	\checkmark	\checkmark	√	\checkmark	\checkmark		
Implement Quality Control Techniques	√	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Apply Information Theory to Communication	\checkmark	\checkmark	~	√	\checkmark			

22. The matrix linking the intended learning outcomes of the course with the intended learning outcomes of the program:

Program SO's Course CLO's	SO (1)	SO (2)	SO (3)	SO (4)	SO (5)	SO (6)	SO (7)	SO (8)
CLO (1)	√	√	\checkmark		\checkmark			\checkmark
CLO (2)	\checkmark	\checkmark	\checkmark		\checkmark			\checkmark
CLO (3)	\checkmark	\checkmark	\checkmark		\checkmark			\checkmark
CLO (4)	\checkmark	\checkmark	\checkmark		\checkmark			\checkmark
CLO (5)	\checkmark	\checkmark	\checkmark		\checkmark			\checkmark

23. Topic Outline and Schedule:

Week	Lecture	Topic		Learning Types Face to Face (FF) Blended (BL) Fully Online (FO)	Platform Used	Synchronous (S) Asynchronous (A)	Evaluation Methods	Learning Resources
	1.1	Random Variables and Distributions	1		EL & Teams		Tests	Text book
1	1.2	Discrete Random Variables	1		EL & Teams		Tests	Text book
	1.3	Continuous Random Variables	1		EL & Teams		Tests	Text book
	2.1	Moments and generating functions	1		EL & Teams		Tests	Text book
2	2.2	Joint distributions	1		EL & Teams		Tests	Text book
	2.3	Conditional distributions	1		EL & Teams		Tests	Text book
3	3.1	Stochastic Processes	1		EL & Teams		Tests	Text book

الجامعة الاردنية

	3.2	Description of queuing models	2	EL & Teams	Tests	Text book
	3.3	The Poisson Process	2	EL & Teams	Tests	Text book
	4.1	The Poisson Process	2	EL & Teams	Tests	Text book
4	4.2 The Poisson Process		2	EL & Teams	Tests	Text book
	4.3 Birth & death process		2	EL & Teams	Tests	Text book
	5.1	Birth & death process	2	EL & Teams	Tests	Text book
5	5.2	Birth & death process	2	EL & Teams	Tests	Text book
	5.3	The single server queue	2	EL & Teams	Tests	Text book
	6.1	The single server queue	2	EL & Teams	Tests	Text book
6	6.2 Modification of the single server queue		2	EL & Teams	Tests	Text book
	6.3	6.3 Modification of the single server queue		EL & Teams	Tests	Text book
	7.1	Reliability Theory Failure laws and reliability	3	EL & Teams	Tests	Text book
7	7.2	Failure laws and reliability	3	EL & Teams	Tests	Text book
	7.3	Failure laws and reliability	3	EL & Teams	Tests	Text book
	8.1	First Exam				
8	8.2	Series Connection	3	EL & Teams	Tests	Text book
	8.3	Series Connection	3	EL & Teams	Tests	Text book
	9.1	Parallel Connection	3	EL & Teams	Tests	Text book
9	9.2	Parallel Connection	3	EL & Teams	Tests	Text book
	9.3	Life testing and Estimation	3	EL & Teams	Tests	Text book
	10.1	Life testing and Estimation	3	EL & Teams	Tests	Text book
10	10.2	Life testing and Estimation	3	EL & Teams	Tests	Text book

الجامعة الاردنية

			[I I I		_
	10.3	Life testing and Estimation	3	EL & Teams	Tests	Text book
	11.1	Quality Control and Acceptance Sampling Control Charts	4	EL & Teams	Tests	Text book
11	11.2	Control Charts	4	EL & Teams	Tests	Text book
	11.3	Acceptance sampling plans by attributes-Single sampling plans	4	EL & Teams	Tests	Text book
	12.1	Second Exam				
12	12.2	Acceptance sampling plans by attributes-Single sampling plans	4	EL & Teams	Tests	Text book
	12.3	Acceptance sampling plans by attributes-Single sampling plans	4	EL & Teams	Tests	Text book
	13.1	Other acceptance sampling plans	4	EL & Teams	Tests	Text book
13	13.2	Other acceptance sampling plans	4	EL & Teams	Tests	Text book
	13.3	13.3 Other acceptance sampling plans		EL & Teams	Tests	Text book
	14.1	Information Theory and Coding Uncertainty, Information and Theory	5	EL & Teams	Tests	Text book
14	14.2	Discrete sources and the first coding theorem	5	EL & Teams	Tests	Text book
	14.3	Discrete sources and the first coding theorem	5	EL & Teams	Tests	Text book
	15.1	Discrete channels and the second coding theorem	5	EL & Teams	Tests	Text book
15	15.2	Discrete channels and the second coding theorem	5	EL & Teams	Tests	Text book
	15.3	Discrete channels and the second coding theorem	5	EL & Teams	Tests	Text book
16					Final Exam	

24. Evaluation Methods:

Opportunities to demonstrate achievement of the CLOs are provided through the following assessment methods and requirements:

Evaluation Activity	Mark	Topic(s)	CLO/s Linked to the Evaluation activity	Period (Week)	Platform
First Midterm Exam	30%	Review Chapters (1-7), ch11	CLO 1, CLO 2	Week 8	Classroom Exam
Second Midterm Exam 30% Chap		Chapter 12, ch13	CLO 3, CLO 4	Week 12	Classroom Exam
Final Exam	50%	Comprehensive Coverage of All Chapters	All CLOs	Last Week of Semester	Classroom Exam

25. Course Requirements:

Students should have a computer, internet connection, webcam, and account on teams.

26. Course Policies:

Attendance is essential to succeeding in this course. You are expected to attend every class; please notify your instructor if you know you will be absent. All exams must be taken at the scheduled times. Exceptions will be made only in extreme circumstances by prior arrangement with the instructor.

If a student is absent for more than 15% of the lectures without a valid excuse (such as sickness or other unavoidable circumstances), they will not be allowed to take the final examination and will receive a failing grade in the course.

Students who need to be excused from exams due to medical reasons should provide a medical certificate to the University Physician for approval. The approved certificates should then be submitted to the Dean of the Faculty within two weeks of the student no longer attending classes.

After grading, test papers will be returned to the students. One week after the papers are returned, the student's mark will be considered final.

Cheating is strictly prohibited in this course. Any student found cheating in exams or homework will be subject to the University's cheating regulations, which will be enforced without exception.

27. References:

A- Required book:
Ian F. Blake, An Introduction to Applied Probability, John Wiley and Sons.
B- Recommended books, materials, and media:
(1) Lecture Notes (2) Bain and Engelhardt, Introduction To Probability And Mathematical Statistics, Second Edition.
28. Additional information:

Name of the Instructor or the Course Coordinator:	Signature:	Date:
Prof. Ahmad Zghoul		28/11/2024
Name of the Head of Quality Assurance Committee/ Department:	Signature:	Date:
Prof. Manal Ghanem		
Name of the Head of Department:	Signature:	Date:
Prof. Baha Alzalg.		
Name of the Head of Quality Assurance Committee/ School of Science:	Signature:	Date:
Prof. Emad A. Abuosba		
Name of the Dean or the Director:	Signature:	Date:
Prof. Mahmoud I. Jaghoub		